

Effmass

[image: "Do I look fat in this potential?" -- electron]

effmass is a Python package for calculating various definitions of effective mass from the electronic bandstructure of a semiconducting material. It consists of a core class that calculates the effective mass and other associated properties of selected bandstructure segments. The module also contains functions for locating bandstructure extrema and plotting approximations to the dispersion.

Examples are provided in a Jupyter notebook tutorial here [https://nbviewer.jupyter.org/github/lucydot/effmass/blob/master/tutorials/Tutorial.ipynb].
Source code is available as a git repository at https://github.com/lucydot/effmass.

Details

	Authors

	Lucy Whalley

	Contact

	l.whalley@northumbria.ac.uk

	GitHub

	https://github.com/lucydot

	Citation

	bibtex

[image: _images/effmass.svg]
 [https://pypi.org/project/effmass/][image: _images/e9cd5e4b98638486a63f397b1ce8f633c73ac0c0.svg]
 [http://effmass.readthedocs.io/en/latest/?badge=latest][image: _images/effmass1.svg]
 [https://travis-ci.com/lucydot/effmass][image: _images/coverage.svg]
 [https://codeclimate.com/github/lucydot/effmass/code][image: _images/136037407.svg]
 [https://zenodo.org/record/1285137#.Wx6QdFMvxBw][image: _images/License-MIT-yellow.svg]
 [https://opensource.org/licenses/MIT][image: _images/status.svg]
 [https://doi.org/10.21105/joss.00797]

Documentation

	Features

	Supported Codes

	Installation
	Alternative Installation Methods

	API documentation
	effmass.inputs

	effmass.extrema

	effmass.dos

	effmass.analysis

	effmass.outputs

	Implementation
	Methods for calculating the curvature effective mass

	Related packages
	Which features are unique to the effmass package?

	Development

	Testing

	Citing

	License

	Acknowledgements

Features

effmass can:

Read in a bandstructure:
It is assumed you have used a DFT calculator to walk through a 1D slice of the Brillouin Zone, capturing the maxima and minima of interest. effmass uses the Python packages [vasppy](https://github.com/bjmorgan/vasppy) for parsing VASP output, and ASE for parsing the Castep output.

Locate extrema:
These correspond to the valence band maxima and conduction band minima. Maxima and minima within a certain energy range can also be located.

Calculate curvature, transport and optical effective masses:
The curvature (aka inertial) and transport masses are calculated using the derivatives of a fitted polynomial function. The optical effective mass can also be calculated assuming a Kane dispersion.

Assess the extent of non-parabolicity:
Parameters of the Kane quasi-linear dispersion are calculated to quantify the extent of non-parabolicity over a given energy range.

Calculate the quasi-fermi level for a given carrier concentration:
Using density-of-states data and assuming no thermal smearing, effmass can calculate the energy to which states are occupied. This is a useful approximation to the quasi-Fermi level. Note: this is only supported for VASP and requires the output file `DOSCAR`.

Plot fits to the dispersion:
Selected bandstructure segments and approximations to the dispersion (assuming a Kane, quadratic, or higher order fit) can be visualised.

The command line interface provides basic functionality for calculating parabolic effective masses.
For those who have a basic familiarity with Python there is an API which provides access to more (non-parabolic) effective mass definitions.
Depending on the functionality and level of approximation you are looking for,
it may be that one of the packages listed [here](https://effmass.readthedocs.io/en/latest/Related%20packages.html) will suit your needs better.

[image: "effmass screenshot"]

Supported Codes

effmass currently supports VASP, FHI-Aims, Castep and ASE. In the near future we hope to play nicely with other codes that interface with the ASE bandstructure class, and pymatgen. We especially welcome contributions that will help make effmass available to more researchers.

Installation

effmass is a Python 3 package and requires key packages from the SciPy ecosystem [https://www.scipy.org/about.html]: SciPy, NumPy and Matplotlib. If you have not installed these packages before, it may be best to install them using your preferred package manager (eg: Homebrew). Note that together they will use >100MB of disk space. effmass can then be installed using the Python package manager pip:

pip install effmass

To start the command line interface simply type

effmass

Alternative Installation Methods

If you use conda/anaconda, the safest thing to do is to create a new environment and then install effmass and all of its dependencies (which will use >300MB of disk space):

conda create -n effmass python
conda activate effmass
pip install effmass

If you wish, you can install the very latest version of effmass from GitHub with the commands below. Note: The latest GitHub version may include more features and data format support that the latest release, but it is not a stable release, so may have more issues than usual. If you are unsure, use one of the above install methods instead.

git clone https://github.com/lucydot/effmass.git
or git clone git@github.com:lucydot/effmass.git
cd effmass
pip install .

API documentation

	effmass.inputs

	effmass.extrema

A module for finding the band structure extrema and instantiating
a Segment object for each extrema point.

The extrema are found within an energy range given by the Settings class.
Each Segment object contains data for kpoints within an energy range given by the Settings class.

	effmass.dos

A module for analysing DOSCAR data.

	effmass.analysis

A module for analysing the data contained in a Segment object.

Contains the Segment class and methods for calculating various definitions of the effective mass.

	effmass.outputs

A module for plotting and summarising segments information,
density-of-states information and effective mass analysis.

effmass.inputs

	
class effmass.inputs.Data

	Parent class for parsing and storing data from bandstructure calculations. Contains a check_data() method for basic checks on bandstructure data.

	
spin_channels

	1 (non-spin-polarised), 2 (spin-polarised), 4 (spin-orbit coupling).

	Type

	int

	
number_of_kpoints

	the number of k-points per band.

	Type

	int

	
number_of_bands

	the number of bands.

	Type

	int

	
kpoints

	2-dimensional array with shape (number_of_kpoints, 3). Each row contains the fractional coordinates of a kpoint [kx,ky,kz].

	Type

	array(float)

	
energies

	2-dimensional array with shape (number_of_bands,number_of_kpoints). Each row contains energies of eigenstates in eV for a particular band.

	Type

	array(float)

	
occupancy

	2-dimensional array with shape (number_of_bands,number_of_kpoints). Each row contains occupation number of the eigenstates for a particular band. Values range from 0-1 (spin-polarised) or 0-2 (non-spin-polarised).

	Type

	array(float)

	
reciprocal_lattice

	the reciprocal lattice vectors in format [[x1,y1,z1],[x2,y2,z2],[x3,y3,z3]], units Angstrom \(^{-1}\).

	Type

	list(float)

	
CBM

	the conduction band minimum energy in eV.

	Type

	float

	
VBM

	the valence band maximum in eV.

	Type

	float

	
fermi_energy

	the fermi energy in eV.

	Type

	float

	
__init__()

	Initialises an instance of the Data class. All attributes are None until set by the derived class.

	Parameters

	None. –

	Returns

	None.

	
check_data(spin_channels, number_of_kpoints, number_of_bands, CBM, VBM, fermi_energy, occupancy)

	Check that Data class attributes make basic sense.

	Parameters

	None. –

	Returns

	None.

Notes

There is a similar method that runs automatically when reading data in using the vasppy.procar [http://vasppy.readthedocs.io/en/latest/vasppy.html#module-vasppy.procar] module.

	
class effmass.inputs.DataASE(bs, atoms)

	Class for interfacing with the ASE bandstructure object. Inherits attributes and methods from the Data class, and extends
with a method for inferring the CBM/VBM from Fermi level.

Note: DataASE.fermi_energy is taken from the seedname.out file.

	Note: The DataASE class does not parse eigenstate occupancy data. The Fermi energy will

	be used to infer which bands are occupied (below the fermi energy) and which are unoccupied (above the fermi energy). You should independently confirm that the fermi energy is in the band gap of your material. Note that you can manually set the fermi_energy attribute and find the CBM and VBM using the method find_cbm_vbm. “)

	
__init__(bs, atoms)

	Initialises an instance of the DataASE class and infers which bands are occupied and unoccupied from the fermi level.

	Parameters

	bs (ase.spectrum.band_structure.BandStructure) – An instance of the ase.spectrum.band_structure.BandStructure object.

	Returns

	None.

	
class effmass.inputs.DataAims(directory_path, output_name='calculation.out')

	Class for parsing and storing data from a FHI-AIMS calculation.

	
spin_channels

	1 (non-spin-polarised), 2 (spin-polarised), 4 (spin-orbit coupling).

	Type

	int

	
number_of_kpoints

	the number of k-points per band.

	Type

	int

	
number_of_bands

	the number of bands.

	Type

	int

	
kpoints

	2-dimensional array with shape (number_of_kpoints, 3). Each row contains the fractional coordinates of a kpoint [kx,ky,kz].

	Type

	array(float)

	
energies

	2-dimensional array with shape (number_of_bands,number_of_kpoints). Each row contains energies of eigenstates in eV for a particular band.

	Type

	array(float)

	
occupancy

	2-dimensional array with shape (number_of_bands,number_of_kpoints). Each row contains occupation number of the eigenstates for a particular band. Values range from 0-1 (spin-polarised) or 0-2 (non-spin-polarised).

	Type

	array(float)

	
reciprocal_lattice

	the reciprocal lattice vectors in format [[x1,y1,z1],[x2,y2,z2],[x3,y3,z3]], units Angstrom \(^{-1}\).

	Type

	list(float)

	
CBM

	the conduction band minimum energy in eV.

	Type

	float

	
VBM

	the valence band maximum in eV.

	Type

	float

	
fermi_energy

	the fermi energy in eV. Automatically set to the mean of Data.CBM and Data.VBM.

	Type

	float

	
__init__(directory_path, output_name='calculation.out')

	Initialises an instance of the DataAims class and checks data using check_data().

	Parameters

	
	directory_path (str) – The path to the directory containing output, geometry.in, control.in and bandstructure files

	output_name (str) – Name of the output file - contrary to the rest of the files, this is chosen by the user during an Aims run. Defaults to ‘aims.out’.

	Returns

	None.

	
fermi_energy = None

	Cutting energy values in a range of 30 eV above and below the Fermi level. FHI AIMS is all electron, but not all states are needed for a meaningful effmass calculation

	
number_of_bands = None

	Finding number of kpoints and determining number of BZ paths

	
reciprocal_lattice = None

	Finding spin channels

	
spin_channels = None

	Finding number of bands

	
class effmass.inputs.DataCastep(directory_path, seedname)

	Class for parsing and storing data from a Castep bandstructure calculation. Inherits attributes and methods from the DataASE class.

	
__init__(directory_path, seedname)

	Initialises an instance of the DataCastep class.

	Parameters

	
	directory_path (str) – The path to a directory containing seedname.cell, seedname.out and seedname.bands

	seedname (str) – The name (without suffix) of the input and output files

	Returns

	None.

	
class effmass.inputs.DataOctopus(bandstructure_path, info_path, results_path)

	Class for parsing and storing data from a octopus calculation. Extends the Data class”

Note: DataOctopus.fermi_energy is automatically set to the mean of DataOctopus.CBM and DataOctopus.VBM.

	
__init__(bandstructure_path, info_path, results_path)

	Initialises an instance of the Data class and checks data using check_data().

	Parameters

	
	bandStructure_path (str) – The path to the bandstructure file.

	info_path (str) – The path to the info file.

	results_path (str) – The path to the results.out file.

	Returns

	None.

	
class effmass.inputs.DataVasp(outcar_path, procar_path, ignore=0, **kwargs)

	Class for parsing and storing data from a vasp calculation. Extends the Data class to include support for analysing DOSCAR data”

	Additional attributes:

	dos (array): 2-dimensional array. Each row contains density of states data (units “number of states / unit cell”) at a given energy: [energy(float),dos(float)].
integrated_dos: 2-dimensional array. Each row contains integrated density of states data at a given energy: [energy(float),integrated_dos(float)].

Note: DataVasp.fermi_energy is automatically set to the mean of DataVasp.CBM and DataVasp.VBM.

	
__init__(outcar_path, procar_path, ignore=0, **kwargs)

	Initialises an instance of the Data class and checks data using check_data().

	Parameters

	
	outcar_path (str) – The path to the OUTCAR file

	procar_path (str or list) – The path(s) to one or more PROCAR files.

	ignore (int) – The number of kpoints to ignore at the beginning of the bandstructure slice through kspace (useful for hybrid calculations where zero weightings are appended to a previous self-consistent calculation).

	**kwargs – Additional keyword arguments for reading the PROCAR file(s).

	Returns

	None.

	
parse_DOSCAR(filename='./DOSCAR')

	Parses the DOS and integrated DOS from a vasp DOSCAR file.

	Parameters

	filename (str, optional) – The location and filename of the DOSCAR to read in. Defaults to ‘./DOSCAR’.

	Returns

	None.

Notes

If the DOS has been sampled at more than 10000 points then this function will break at the expression for num_data_points.
In this case, edit your DOSCAR file so that in the header there is a space preceding the number of points.

	
class effmass.inputs.DataVasprun(path)

	Class for parsing and storing data from a VASP calculation using vasprun.xml.
Works for parsing calculations with split k-point paths

Note: occupancies are set to 0 below fermi level and 1 above it

	
__init__(path)

	Initialises an instance of the Data class and
checks data using check_data().

	Parameters

	
	path (str) – Path to vasprun.xml. If the calculation was split along

	k-path, the path should be to the folder which contains the (the) –

	i.e. for mapi/split-01/vasprun.xml, mapi/split-02/vasprun.xml (splits.) –

	would specify path=mapi (you) –

	Returns

	None.

	
class effmass.inputs.Settings(energy_range=0.25, extrema_search_depth=0.025, conduction_band=True, valence_band=True, direction=None, frontier_bands_only=False, bandfit=6, degeneracy_condition=1e-05)

	Class for setting analysis parameters.

	
energy_range

	energy in kT over which the segment extends.

	Type

	float

	
extrema_search_depth

	energy in kT from bandedge over which to search for extrema.

	Type

	float

	
conduction_band

	calculate conduction band (electron) effective masses. Defaults to True.

	Type

	bool

	
valence_band

	calculate valence band (hole) effective masses. Defaults to True.

	Type

	bool

	
direction

	calculate effective masses for this direction only. If None then effective masses for all directions are calculated. Defaults to False.

	Type

	list(float)

	
frontier_bands_only

	calculate effective masses for the lowest energy conduction band and/or highest energy valence band only. When True this overrides extrema_search_depth. Defaults to False.

	
degree_bandfit

	the degree of the polynomial which is used to fit to dispersion data when calculating the transport mass.

	Type

	int

	
degeneracy_condition

	the energy difference below which bands are considered to be degenerate. Defaults to 1E-5.

	Type

	float

	
__init__(energy_range=0.25, extrema_search_depth=0.025, conduction_band=True, valence_band=True, direction=None, frontier_bands_only=False, bandfit=6, degeneracy_condition=1e-05)

	Initialises an instance of the Settings class and checks input using
check_settings().

	Parameters

	
	energy_range (float) – energy in eV over which the segment extends. Defaults to 0.25 eV.

	extrema_search_depth (float) – energy in eV from bandedge over which to search for extrema. Defaults to 0.025 eV.

	conduction_band (bool) – calculate conduction band (electron) effective masses. Defaults to True.

	valence_band (bool) – calculate valence band (hole) effective masses. Defaults to True.

	direction (list(float or int)) – calculate effective masses for this direction only. If None then effective masses for all directions are calculated. Defaults to False.

	frontier_bands_only – calculate effective masses for the lowest energy conduction band and/or highest energy valence band only. When True this overrides extrema_search_depth. Defaults to False.

	bandfit (int) – the degree of the polynomial which is used to fit to dispersion data when calculating the transport mass.

	degeneracy_condition (float) – the energy difference below which bands are considered to be degenerate. Defaults to 1E-5.

	Returns

	None.

	
check_settings()

	Check that Settings class attributes are sane.

	Parameters

	None. –

	Returns

	None.

effmass.extrema

A module for finding the band structure extrema and instantiating
a Segment object for each extrema point.

The extrema are found within an energy range given by the Settings class.
Each Segment object contains data for kpoints within an energy range given by the Settings class.

	
effmass.extrema.calc_CBM_VBM_from_Fermi(Data, CBMVBM_search_depth=4.0)

	This function is used to find the CBM and VBM when there is no occupancy data. It relies upon the Fermi level being in the middle of the band gap.
The CBMVBM_search_depth is refereced from the fermi energy.

	Parameters

	DataASE (DataASE) – instance of the DataASE class.

	Returns

	A tuple containing the conduction band minimum and valence band maximum in eV.

	Return type

	(float, float)

	
effmass.extrema.calculate_direction(a, b)

	Calculates the direction vector between two points.

	Parameters

	
	a (list) – the position vector of point a.

	b (list) – the position vector of point b.

	Returns

	The (unnormalised) direction vector between points a and b. The smallest magnitude of an element is 1 (eg: [1,1,2]).

	Return type

	array

	
effmass.extrema.change_direction(kpoints, kpoint_indices)

	Finds the index of the kpoint (if any) where there is a change of
direction in reciprocal space.

	Parameters

	
	kpoints (array) – array of kpoints with shape (number_of_kpoints, 3). Each row contains the fractional coordinates of a kpoint [kx,ky,kz]. See effmass.inputs.Data.kpoints.

	kpoint_indices (list (int)) – the kpoint indices over which to check for change in direction

	Returns

	the index of the kpoint where there is a change of direction. If there is no change of direction, returns None.

	Return type

	int

	
effmass.extrema.filter_segments_by_direction(segment_list, direction)

	Filter a list of Segments so that only those in a particular direction remain.

	Parameters

	
	segment_list (list(Segment)) – A list of Segment objects.

	direction (array(float)) – The direction array, length 3.

	Returns

	A list of Segment objects.

	Return type

	segment_list (list(Segment))

	
effmass.extrema.find_CB_indices(Data, Settings)

	Finds the kpoint index and band index of the minimum energy
turning points within effmass.inputs.Settings.energy_range of the
conduction band minimum (effmass.inputs.Data.CBM). Return indices for the
lowest energy CB only if frontier_bands_only is True.

	Parameters

	
	Data (Data) – instance of the Data class.

	Settings (Settings) – instance of the Settings class.

	Returns

	A 2-dimensional array. Contains [efmmas.inputs.Data.bands index, effmass.inputs.Data.kpoints index] for each minima.

	Return type

	array

	
effmass.extrema.find_VB_indices(Data, Settings)

	Finds the kpoint index and band index of the maximum energy
turning points within effmass.inputs.Settings.energy_range of the
valence band maximum (effmass.inputs.Data.VBM). Return indices for the
highest energy VB only if frontier_bands_only is True.

	Parameters

	
	Data (Data) – instance of the Data class.

	Settings (Settings) – instance of the Settings class.

	Returns

	A 2-dimensional array. Contains [efmmas.inputs.Data.bands index, effmass.inputs.Data.kpoints index] for each maxima.

	Return type

	array

	
effmass.extrema.generate_segments(Settings, Data, bk=None, truncate_dir_change=True)

	Generates a list of Segment objects.

	Args:

	Settings (Settings): instance of the Settings class.
Data (Data): instance of the Data class.
truncate_dir_change (bool): If True, truncates eigenstates when there is a change in direction. If False, there is no truncation. Defaults to True.
bk (list(int)): To manually set an extrema point, in format [effmass.inputs.Data.energies row index, effmass.inputs.Data.kpoints row index]. Defaults to None.

	Returns

	A list of Segment objects.

	Return type

	list(Segment)

	
effmass.extrema.get_frontier_CB_indices(Data, CB_min_indices, degeneracy_condition)

	Returns the indices of the lowest energy minima across the Brillouin Zone

	Parameters

	
	Data (Data) – instance of the Data class.

	CB_min_indices (array(int)) – A 2-dimensional array. Each row contains [efmmas.inputs.Data.bands index, effmass.inputs.Data.kpoints index] for each minimum in the CB band.

	Returns

	A 2-dimensional array. Each row contains [efmmas.inputs.Data.bands index, effmass.inputs.Data.kpoints index] for each minimum in the frontier conduction band(s).

	Return type

	frontier_indices (array(int))

	
effmass.extrema.get_frontier_VB_indices(Data, VB_max_indices, degeneracy_condition)

	Returns the indices of the highest energy maxima across the Brillouin Zone

	Parameters

	
	Data (Data) – instance of the Data class.

	VB_max_indices (array(int)) – A 2-dimensional array. Each row contains [efmmas.inputs.Data.bands index, effmass.inputs.Data.kpoints index] for each maximum in the VB band.

	Returns

	A 2-dimensional array. Each row contains [efmmas.inputs.Data.bands index, effmass.inputs.Data.kpoints index] for each maximum in the frontier valence band(s).

	Return type

	frontier_indices (array(int))

	
effmass.extrema.get_kpoints_after(band_index, kpoint_index, Settings, Data, truncate_dir_change=True)

	For a given eigenstate, finds eigenstates which 1) belong to the same
band 2) come after the given eigenstate in the route through reciprocal
space 3) are within effmass.inputs.Settings.energy_range.

	Parameters

	
	band_index (int) – index of effmass.inputs.Data.bands.

	kpoint_index (int) – index of effmass.inputs.Data.kpoints.

	Settings (Settings) – instance of the Settings class.

	Data (Data) – instance of the Data class.

	truncate_dir_change (bool) – If True, truncates eigenstates when there is a change in direction. If False, there is no truncation. Defaults to True.

	Returns

	indices of effmass.inputs.Data.kpoints.

	Return type

	list(int)

	
effmass.extrema.get_kpoints_before(band_index, kpoint_index, Settings, Data, truncate_dir_change=True)

	For a given eigenstate, finds eigenstates which 1) belong to the same
band 2) come before the given eigenstate in the route through reciprocal
space 3) are within effmass.inputs.Settings.energy_range.

	Parameters

	
	band_index (int) – index of effmass.inputs.Data.bands.

	kpoint_index (int) – index of effmass.inputs.Data.kpoints.

	Settings (Settings) – instance of the Settings class.

	Data (Data) – instance of the Data class.

	truncate_dir_change (bool) – If True, truncates eigenstates when there is a change in direction. If False, there is no truncation. Defaults to True.

	Returns

	indices of effmass.inputs.Data.kpoints.

	Return type

	list(int)

	
effmass.extrema.get_maximum_indices(Data, extrema_search_depth)

	Finds the kpoint indices and band indices of all maximum turning points in VB within extrema_search_depth.

	Parameters

	
	Data (Data) – instance of the Data class.

	extrema_search_depth (float) – energy in kT from bandedge over which to search for maxima.

	Returns

	A 2-dimensional array. Each row contains [efmmas.inputs.Data.bands index, effmass.inputs.Data.kpoints index] for each maximum in the VB band.

	Return type

	array

	
effmass.extrema.get_minimum_indices(Data, extrema_search_depth)

	Finds the kpoint indices and band indices of all minimum turning points in CB within extrema_search_depth.

	Parameters

	
	Data (Data) – instance of the Data class.

	extrema_search_depth (float) – energy in kT from bandedge over which to search for minima.

	Returns

	A 2-dimensional array. Each row contains [efmmas.inputs.Data.bands index, effmass.inputs.Data.kpoints index] for each minimum in the CB band.

	Return type

	array

effmass.dos

A module for analysing DOSCAR data.

	
effmass.dos.electron_fill_level(Data, volume, concentration, CBM_index)

	Finds the energy to which a given electron concentration will fill the density of states in integrated_dos.

Uses linear interpolation to estimate the energy between two points given in the DOSCAR.

	Parameters

	
	Data (Data) – Instance of the Data class.

	volume (float) – volume of the unit cell in angstrom \(^3\).

	concentration (float) – electron concentration in cm \(^{-3}\).

	CBM_index (int) – highest index of the integrated_dos array where the energy is less than CBM.

	Returns

	the energy (eV, referenced from the CBM) to which the electrons will fill. For the case where the concentration specified would fill all states specified by integrated_dos, None is returned.

	Return type

	float

Notes

The precision of the result will depend upon the energy resolution in the DOSCAR.

	
effmass.dos.find_dos_CBM_index(Data)

	Finds the highest index of the
integrated_dos array where the energy is less
than CBM.

	Parameters

	Data (Data) – Instance of the Data class.

	Returns

	the highest index of the integrated_dos array where the energy is less than CBM.

	Return type

	int

	
effmass.dos.find_dos_VBM_index(Data)

	Finds the lowest index of the
integrated_dos array where the energy exceeds
VBM.

	Parameters

	Data (Data) – Instance of the Data class.

	Returns

	the lowest index of the integrated_dos array where the energy exceeds VBM.

	Return type

	int

	
effmass.dos.hole_fill_level(Data, volume, concentration, VBM_index)

	Finds the energy to which a given hole concentration will fill the density of states in integrated_dos.

Uses linear interpolation to estimate the energy between two points given in the DOSCAR.

	Parameters

	
	Data (Data) – Instance of the Data class.

	volume (float) – volume of the unit cell in angstrom \(^3\).

	concentration – hole concentration in cm \(^{-3}\).

	VBM_index (int) – lowest index of the integrated_dos array where the energy is more than than VBM.

	Returns

	the energy (eV, referenced from the VBM) to which the holes will fill. For the case where the concentration specified would fill all states specified by integrated_dos, None is returned.

	Return type

	float

Notes

The precision of the result will depend upon the energy resolution in the DOSCAR.

effmass.analysis

A module for analysing the data contained in a Segment object.

Contains the Segment class and methods for calculating various definitions of the effective mass.

	
class effmass.analysis.Segment(Data, band, kpoint_indices)

	Class for segments of the bandstructure. A Segment contains data for a
particular region of reciprocal space and particular band.

	
band

	The band number of the segment (counting starts from 0).

	Type

	int

	
kpoint_indices

	The indices of effmass.inputs.Data.kpoints from which this Segment is formed.

	Type

	list(int)

	
kpoints

	2-dimensional array. Each row contains the fractional coordinates of a kpoint [kx,ky,kz]. A slice of effmass.inputs.Data.kpoints.

	Type

	array(float)

	
cartesian_kpoints

	2-dimensional array. Each row contains the cartesian coordinates (angstrom \(^{-1}\)) of a kpoint.

	Type

	array(float)

	
dk_angs

	1-dimensional array which contains the distance (angstrom \(^{-1}\)) between each kpoint and the extrema.

	Type

	array(float)

	
dk_bohr

	1-dimensional array which contains the distance (bohr \(^{-1}\)) between each kpoint and the extrema.

	Type

	array(float)

	
energies

	1-dimensional array which contains the energy (eV) of each eigenstate. A slice of effmass.inputs.Data.energies.

	Type

	array(float)

	
dE_eV

	1-dimensional array which contains the difference in energy (hartree) between each kpoint and the extrema.

	Type

	array(float)

	
dE_hartree

	1-dimensional array which contains the difference in energy (eV) between each kpoint and the extrema.

	Type

	array(float)

	
occupancy

	2-dimensional array. Each row contains occupation number of the eigenstates for a particular band. A slice of effmass.inputs.Data.occupancy.

	Type

	array(float)

	
direction

	1-dimensional array with length 3. The direction between kpoints in the segment.

	Type

	array(float)

	
band_type

	The band type, determined by occupancy of the eigenstate. Argument choices are “conduction_band”, “valence_band” or “unknown”. If set to “unknown”, some class methods will raise a warning and return None.

	Type

	str

	
fermi_energy

	the fermi energy in eV.

	Type

	float

	
__init__(Data, band, kpoint_indices)

	Initialise an instance of the Segment class.

	Parameters

	
	Data (Data) – Data instance initialised from the bandstructure which contains the segment

	band (int) – the band number of the segment

	kpoint_indices (list(int)) – the kpoint indices of the segment

	Returns

	None.

	
alpha(polyfit_order=6, truncate=True)

	The transport mass (\(\frac{k}{\delta E \delta k}\)) is calculated as a function of dk_bohr and fitted to a straight line. The gradient of this line determines the alpha parameter which is used in the kane dispersion.

See effmass.analysis.Segment.transport_effmass().

	Parameters

	
	polyfit_order (int, optional) – order of polynomial used to approximate the dispersion. Defaults to 6.

	truncate (bool, optional) – If True, data only up to effmass.analysis.Segment.explosion_index() is used. If False, alpha is calculated using data for the whole segment. Defaults to True.

	Returns

	The alpha parameter (hartree \(^{-1}\)).

	Return type

	float

	
explosion_index(polyfit_order=6)

	This will find the index at which there is a change in sign of the second derivative.

In the region of this point the first derivative will pass through zero and so the transport mass (\(\frac{1}{\delta E \delta k}\)) will explode.

	Parameters

	polyfit_order (int, optional) – order of polynomial used to approximate the dispersion. Defaults to 6.

Notes

This marks the point at which the Kane dispersion is definitely not valid, although it may be that the Kane dispersion is a poor approximation prior to this.

	
fd(k, fermi_level, temp, alpha, mass_bandedge)

	Calculates the probability that an eigenstate of momentum k is occupied, using Fermi-Dirac statistics and assuming a Kane dispersion.

	Parameters

	
	k – the momentum of the eigenstate (bohr:math:^{-1}).

	fermi_level (float, optional) – Fermi level (eV) to be used in Fermi-dirac statistics. Defaults to fermi_energy.

	temp (float, optional) – The temperature (K) to be used in Fermi-Dirac statistics. Defaults to 300.

	alpha (float, optional) – The alpha parameter of the Kane dispersion (hartree$^{-1}$)

	mass_bandedge – The mass at bandedge parameter of the Kane dispersion (units electron mass).

	Returns

	The probability that the eigenstate is occupied.

	Return type

	float

Note

The sign of the alpha parameter and mass_bandedge are important. If these are negative (as would be expected for the valence band), then they must be passed as negative values to the function.

	
finite_difference_effmass()

	The curvature at the band edge is calculated using a second order
forward finite difference method. This is then inverted to give an
effective mass.

	Parameters

	None –

	Returns

	Bandedge effective mass from finite difference (in units of electron mass).

	Return type

	float

	
finite_difference_fit()

	Calculates the curvature at the band edge using a finite difference method and then evaluates the corresponding quadratic dispersion along dk_bohr.

See effmass.analysis.Segment.finite_difference_effmass().

	Parameters

	None –

	Returns

	list containing energies (hartree). The energies are calculated at 100 points evenly distributed across dk_bohr using the quadratic approximation.

	Return type

	list(float)

	
five_point_leastsq_effmass()

	Fits a parabolic dispersion using the least-squares method to 5
points (3 DFT-calculated points + 2 from symmetry).

	Parameters

	None –

	Returns

	Curvature effective mass (in units of electron mass).

	Return type

	float

Notes

no weighting is used.

	
five_point_leastsq_fit()

	Calculates the curvature effective mass using a parabolic least-
squares fit and then evaluates the corresponding parabolic dispersion
along dk_bohr.

	Parameters

	None –

	Returns

	list containing energies (hartree). The energies are calculated at 100 points evenly distributed across dk_bohr.

	Return type

	list(float)

	
inertial_effmass(polyfit_order=6, dk=None, polyfit_weighting=False)

	Calculates the inertial (curvature) effective mass (\(\frac{1}{\frac{\delta^2E}{\delta k^2}}\)), evaluated at dk_bohr.

	Parameters

	
	polyfit_order (int, optional) – order of polynomial used to approximate the dispersion. Defaults to 6.

	dk (array, optional) – distance (bohr :math:^{-1}) from extrema in reciprocal space at which to evaluate second order derivatives. Defaults to 100 points evenly distributed across the whole segment.

	polyfit_weighting (bool, optional) – If True, polyfit will be weighted according to occupation of eigenstates. If False, no weighting will be used.

	Returns

	array(float). 1d array containing the conductivity effective mass (in units of electron rest mass) evaluated at the points specified in dk.

	
kane_fit(polyfit_order=6)

	Calculate the Kane quasi-linear dispersion parameters, then evaluates at 100 points evenly distributed across dk_bohr.

	The Kane quasi-linear dispersion is described by

	
	..math::

	frac{hbar ^2 k^2}{2m_{tb}} = E(1+alpha E)

	where the transport mass at bandedge (\(m_{tb}\)) and the alpha parameter are calculated by fitting a linear function to the transport mass \(m_t\) as a function of energy E.

	
	..math::

	m_t = m_{tb}(1+2alpha E)

The transport mass \(m_t\) is calculated by approximating the dispersion with a polynomial function and taking the first derivative, see transport_effmass().

	Parameters

	polyfit_order (int, optional) – order of polynomial used to approximate the dispersion. Defaults to 6.

	Returns

	1d array containing energies (hartree).

	Return type

	array

	
kane_mass_band_edge(polyfit_order=6, truncate=True)

	The transport mass (\(\frac{1}{\delta E \delta k}\)) is calculated as a function of dk_bohr and fitted to a straight line. The intercept of this line with the y-axis gives a transport mass at bandedge which is used as a parameter in the kane dispersion.

See effmass.analysis.Segment.transport_effmass().

	Parameters

	
	polyfit_order (int, optional) – order of polynomial used to approximate the dispersion. Defaults to 6.

	truncate (bool, optional) – If True, data only up to effmass.analysis.Segment.explosion_index() is used. If False, alpha is calculated using data for the whole segment. Defaults to True.

	Returns

	transport mass at bandedge (in units of electron mass).

	Return type

	float

	
mass_integration(fermi_level=None, temp=300, alpha=None, mass_bandedge=None, upper_limit=None)

	Integrates the product of the fermi-dirac distribution, density of
states and second derivative of kane dispersion along the one-
dimensional slice of k-space defined by
Segment (up to
explosion_index()).

	Parameters

	
	fermi_level (float, optional) – Fermi level (eV) to be used in Fermi-dirac statistics. Defaults to fermi_energy.

	temp (float, optional) – The temperature (K) to be used in Fermi-Dirac statistics. Defaults to 300.

	alpha (float, optional) – The alpha parameter of the Kane dispersion (hartree$^{-1}$)

	mass_bandedge – The mass at bandedge parameter of the Kane dispersion (units electron mass).

	upper_limit (float, optional) – The integration upper limit (bohr$^{-1}$). Defaults to where the Kane quasi-linear dispersion is no longer valide, defined by explosion_index().

	Returns

	The optical effective mass (units of electron mass), defined as the inverse of the second derivative of a kane dispersion, weighted according to occupancy of available eigenstates (the product of density of states and the fermi-dirac distribution).

	Return type

	float

Note

The sign of the alpha parameter and mass_bandedge are important. If these are negative (as would be expected for the valence band), then they must be passed as negative values to the function.

	
optical_effmass_kane_dispersion(fermi_level=None, temp=300, alpha=None, mass_bandedge=None, upper_limit=None)

	Calculates the optical effective mass, with the dispersion approximated by a Kane quasi-linear function.

	This optical effective mass is defined as:

	
	..math::

	frac{1}{m_o} = frac{int f(E_k(k),T) frac{delta^2 E_k(k)}{delta k^2} dk}{int f(E_k(k),T) dk}

	where the integral is along the one-dimensional slice of k-space defined by Segment (up to explosion_index()) and \(f(E_k,T)\) is the Fermi-Dirac distribution. E_k(k) is the Kane dispersion:

	
	..math::

	frac{hbar ^2}{2m_{tb}} = E(1+alpha E)

where the transport mass at bandedge (\(m_{tb}\)) is calculated using effmass.analysis.Segment.kane_mass_band_edge() and the alpha parameter is calculated using effmass.analysis.Segment.alpha().

	Parameters

	
	fermi_level (float, optional) – Fermi level (eV) to be used in Fermi-dirac statistics. Defaults to fermi_energy.

	temp (float, optional) – The temperature (K) to be used in Fermi-Dirac statistics. Defaults to 300.

	alpha (float, optional) – The alpha parameter of the Kane dispersion (hartree$^{-1}$)

	mass_bandedge – The mass at bandedge parameter of the Kane dispersion (units electron mass).

	upper_limit (float, optional) – The integration upper limit (bohr$^{-1}$). Defaults to where the Kane quasi-linear dispersion is no longer valide, defined by explosion_index().

	Returns

	The optical effective mass (units of electron mass) of the Segment.

	Return type

	float

Note

The sign of the alpha parameter and mass_bandedge are important. If these are negative (as would be expected for the valence band), then they must be passed as negative values to the function.

	
optical_poly_effmass(polyfit_order=6)

	Calculates the optical effective mass with a polynomial approximation to the dispersion

	This optical effective mass is defined as:

	
	..math::

	frac{1}{m_o} = frac{sum_i f(E_i) g(k_i) frac{delta^2 E}{delta k^2}|_i}{sum f(E_i) g(k_i)}

where the sum is over eigenstates i contained withing the Segment. \(f_(E_i)\) is the probability of occupation (Fermi-Dirac statistics) and \(g(k_i)\) is the density of states at that k-point.

	Parameters

	polyfit_order (int, optional) – order of polynomial used to approximate the dispersion. Defaults to 6.

	Returns

	The optical effective mass (units of electron mass) of the Segment.

	Return type

	float

	
poly_derivatives(polyfit_order=6, polyfit_weighting=True, dk=None)

	Constructs a polynomial function using a least squares fit to
Segment dispersion data, then evaluates first and second order
derivatives.

	Parameters

	
	polyfit_order (int, optional) – order of polynomial used to approximate the dispersion. Defaults to 6.

	polyfit_weighting (bool, optional) – If True, polyfit will be weighted according to occupation of eigenstates. If False, no weighting will be used.

	dk (array, optional) – distance (bohr :math:^{-1}) from extrema in reciprocal space at which to evaluate first and second order derivatives. Defaults to 100 points evenly distributed across the whole segment.

	Returns

	A tuple containing a 1d array of first derivatives and 1d array of second derivatives, evaluated at dk: ([dedk],[d2edk2])

	Return type

	tuple

	
poly_fit(polyfit_order=6, polyfit_weighting=True)

	Constructs a polynomial function using a least squares fit to
Segment dispersion data, then evaluates at
100 points evenly distributed across
dk_bohr.

	Parameters

	
	polyfit_order (int, optional) – order of polynomial used to approximate the dispersion. Defaults to 6.

	polyfit_weighting (bool, optional) – If True, polyfit will be weighted according to occupation of eigenstates. If False, no weighting will be used.

	Returns

	1d array containing energies (hartree).

	Return type

	array

	
transport_effmass(polyfit_order=6, dk=None, polyfit_weighting=False)

	Calculates the transport mass (\(\frac{k}{\delta E \delta k}\)), evaluated at dk_bohr .

	Parameters

	
	polyfit_order (int, optional) – order of polynomial used to approximate the dispersion. Defaults to 6.

	dk (array, optional) – distance (bohr :math:^{-1}) from extrema in reciprocal space at which to evaluate first order derivatives. Defaults to 100 points evenly distributed across the whole segment.

	polyfit_weighting (bool, optional) – If True, polyfit will be weighted according to occupation of eigenstates. If False, no weighting will be used.

	Returns

	array(float). 1d array containing the transport effective mass (in units of electron rest mass) evaluated at the points specified in dk.

	
weight_integration(fermi_level=None, temp=300, alpha=None, mass_bandedge=None, upper_limit=None)

	Integrates the product of the fermi-dirac distribution
along the one-dimensional slice of k-space defined by
Segment (up to
explosion_index()).

	Parameters

	
	fermi_level (float, optional) – Fermi level (eV) to be used in Fermi-dirac statistics. Defaults to fermi_energy.

	temp (float, optional) – The temperature (K) to be used in Fermi-Dirac statistics. Defaults to 300.

	upper_limit (float, optional) – The integration upper limit (bohr$^{-1}$). Defaults to where the Kane quasi-linear dispersion is no longer valide, defined by explosion_index().

	Returns

	A normalisation factor for mass_integration().

	Return type

	float

Note

The sign of the alpha parameter and mass_bandedge are important. If these are negative (as would be expected for the valence band), then they must be passed as negative values to the function.

	
weighted_leastsq_effmass()

	Fits a parabolic dispersion using the weighted least-squares method
to all points in the segment, plus those from symmetry, E(k)=E(-k).

	Parameters

	None –

	Returns

	Curvature effective mass (in units of electron mass)

	Return type

	float

Notes

weighting is given by the Fermi-Dirac distribution.

	
weighted_leastsq_fit()

	Calculates the curvature effective mass usinhag a weighted least-
squares fit and then evaluates the corresponding parabolic dispersion
along dk_bohr.

	Parameters

	None –

	Returns

	list containing energies (hartree). The energies are calculated at 100 points evenly distributed across dk_bohr.

	Return type

	list(float)

	
weighting(fermi_level=None, temp=300)

	Calculates a weighting for each kpoint using the Fermi-Dirac
statistics.

	Parameters

	
	quasi_fermi_level (float, optional) – The fermi level to be used in Fermi-Dirac statistics. Defaults to effmass.inputs.Segment.fermi_energy.

	temp (float, optional) – The temperature (K) to be used in Fermi-Dirac statistics. Defaults to 300.

	Returns

	A 1-dimensional array which contains the weighting for each k-point.

	Return type

	array(float)

Notes

The weighting is relative only: constants will cancel out when using to weight least square fits or means.

	
class effmass.analysis.SegmentVasp(DataVasp, band, kpoint_indices)

	Class for segments of a Vasp bandstructure. Inherits from Segment class,
and extends to include DOS Segment data.

	Additional attributes:

	dos (array): 2-dimensional array. Each row contains density of states data (units “number of states / unit cell”) at a given energy: [energy(float),dos(float)]. A slice of effmass.inputs.DataVasp.dos.
integrated_dos (array): 2-dimensional array. Each row contains integrated density of states data at a given energy: [energy(float),integrated_dos(float)]. A slice of effmass.inputs.DataVasp.integrated_dos.

	
__init__(DataVasp, band, kpoint_indices)

	Initialise an instance of the Segment class.

	Parameters

	
	Data (Data) – Data instance initialised from the bandstructure which contains the segment

	band (int) – the band number of the segment

	kpoint_indices (list(int)) – the kpoint indices of the segment

	Returns

	None.

effmass.outputs

A module for plotting and summarising segments information,
density-of-states information and effective mass analysis.

	
effmass.outputs.make_table(segments, which_values=None)

	Prints table summary of segments data to terminal

	Parameters

	
	segments (list) – Which segments to use.

	which_values (list) – use ‘least squares’ or ‘finite differences’ (default: both)

	
effmass.outputs.plot_dos(DataVasp, figsize=(8, 8))

	Plots density of states (states/unit-cell) against energy (eV).

	Parameters

	
	DataVasp (DataVasp) – instance of the DataVasp class.

	figsize (list) – Size of matplotlib figure. Default: (8, 8)

	Returns

	tuple containing instance of the matplotlib.pyplot.figure [https://matplotlib.org/api/figure_api.html] class and matplotlib.pyplot.axes [https://matplotlib.org/api/axes_api.html] class.

	Return type

	Figure, Axes

Notes

The valence band maximum is set to 0 eV.

	
effmass.outputs.plot_integrated_dos(DataVasp, figsize=(8, 8))

	Plots integrated density of states (states/unit-cell) against energy
(eV).

	Parameters

	
	DataVasp (DataVasp) – instance of the DataVasp class.

	figsize (list) – Size of matplotlib figure. Default: (8, 8)

	Returns

	tuple containing instance of the matplotlib.pyplot.figure [https://matplotlib.org/api/figure_api.html] class and matplotlib.pyplot.axes [https://matplotlib.org/api/axes_api.html] class.

	Return type

	Figure, Axes

Notes

The valence band maximum is set to 0 eV.

	
effmass.outputs.plot_segments(Data, Settings, segments, savefig=False, random_int=None, figsize=(8, 8))

	Plots bandstructure overlaid with the DFT-calculated points for each Segment
instance. Each Segment is labelled with it’s direction in reciprocal space
and index number from the segments argument.

	Parameters

	
	Data (Data) – instance of the Data class.

	Settings (Settings) – instance of the Settings class.

	segments (list(Segment)) – A list of instances of the Segment class.

	figsize (list) – Size of matplotlib figure. Default: (8, 8)

	Returns

	tuple containing instance of the matplotlib.pyplot.figure [https://matplotlib.org/api/figure_api.html] class and matplotlib.pyplot.axes [https://matplotlib.org/api/axes_api.html] class.

	Return type

	Figure, Axes

Notes

The x-axis of the plot is not to scale.

Implementation

Methods for calculating the curvature effective mass

Three methods are used to calculate the curvature effective mass (Eqn.1 in the main text).

	Finite difference

We use a three point forward finite difference equation to calculate the curvature at point i:

\[\frac{\partial^2E}{\partial k^2} = \frac{E_{i+2} - 2E_{i+1} + E_{i}}{\left|k_{i+1} - k_i\right|},\]

where \(E_i\) is the energy eigenvalue at position \(k_i\) in reciprocal space.

	Unweighted least-squares fit

To obtain estimates for the coefficient of a parabolic dispersion

\[E = ck^2,\]

we use the least-squares method as implemented in the NumPy Python library to minimise the summed square of residuals

\[\sum^{5}_{i=1}(ck_i^2 - E_i)^2.\]

We fit to five points; three points from the DFT-calculated dispersion plus two from the symmetry of the dispersion (\(E(k)=E(-k)\)).

	Weighted least-squares fit

To obtain estimates for the coefficients of the dispersion

\[E = {c}k^2,\]

we use the least-squares method as implemented in the NumPy Python library to minimise the summed square of residuals

\[\sum^{n}_{i=1}W_i(ck_i^2 - E_i)^2.\]

The summation is over all points up to an energy of \(0.25\,eV\), including points generated from the symmetry of the dispersion, \(E(k)=E(-k)\).
\(W_i\) is given by

\[W_i(E_i,T) = \frac{1}{\exp\left(\frac{E_i-E_f}{k_BT}\right)+1}.\]

Related packages

The effmass package is aimed towards theoretical solid state physicists and chemists who have a basic familiarity with Python.
Depending on the functionality and level of approximation you are looking for,
it may be that one of the packages listed below will suit your needs better.

vasppy [https://github.com/bjmorgan/vasppy]: This is installed as a dependancy of effmass. Calculates the effective mass using a least-squares quadratic fit for parabolic dispersions.

sumo [https://github.com/SMTG-UCL/sumo]: Calculates the effective mass using a least-squares fit for parabolic and non-parabolic dispersions.

emc [https://github.com/afonari/emc]: Calculates the effective mass tensor using a finite-difference method for parabolic dispersions.

pymatgen [http://pymatgen.org]: This is installed as a dependancy of effmass. Calculates an average effective mass tensor for non-parabolic dispersions with multiple bands and extrema. Also calculates the Seebeck effective mass as defined here [https://perso.uclouvain.be/geoffroy.hautier/wp-content/papercite-data/pdf/gibbs2017.pdf].

mstar [https://github.com/rubel75/mstar]: Effective mass calculator using k.p perturbation theory. Assumes parabolicity; provides the conductivity effective mass tensor at band edge. The advantage of this code is that it does not require a DFT calculation along the high symmetry paths in reciprocal space.

EMAF [https://github.com/PatrizioGraziosi/EMAF-code]: Calculates the DOS effective mass (at a specific temperature), taking into account non-parabolicity and anisotropy. Also calculates the conductivity effective mass. Written in Matlab.

If you have an update to the information above then please use the Github issue tracker [https://github.com/lucydot/effmass/issues/].

Which features are unique to the effmass package?

To our knowledge, the following features are unique to effmass:

	easily compare the values of curvature effective mass calculated using multiple numerical techniques (least-squares and polynomial fitting)

	tailor the polynomial fitting used to approximate the DFT calculated dispersion: by choosing the order of the polynomial and the energy range to fit over.

	visualise the dispersions used to approximate the DFT calculated dispersion

	quantify non-parabolicity through the Kane dispersion parameters: effective mass at band-edge and alpha

	calculate the optical effective mass assuming a Kane dispersion.

Development

Please use the Github issue tracker [https://github.com/lucydot/effmass/issues/] for feature requests and bug reports.

If you would like to contribute please do so via a pull request. All contributors must read and respect the code of conduct [https://github.com/lucydot/effmass/blob/master/CODE_OF_CONDUCT.md]. In particular, we welcome contributions which would extend effmass so that it is able to parse output from other electronic structure codes.

Testing

Automated testing of the latest commit happens here [https://travis-ci.com/lucydot/effmass].

Manual tests can be run using

python3 -m pytest

This code has been tested with Python version 3.6.

Citing

If you use this code in your research, please cite the following paper:

Whalley, Lucy D. (2018). effmass - an effective mass package. The Journal of Open Source Software, 3(28) 797.

	Citation

	bibtex

License

Copyright 2018 Lucy Whalley

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Acknowledgements

This package was originally written by Lucy Whalley [https://github.com/lucydot] during a PhD funded by the EPSRC [http://www.epsrc.ac.uk] through the Centre for Doctoral Training in New and Sustainable Photovoltaics [http://www.cdt-pv.org/] (grant no. EP/L01551X/1 [http://gtr.ukri.org/projects?ref=EP/L01551X/1]) at Imperial College London [http://www.imperial.ac.uk/]. Aron Walsh and Benjamin J. Morgan supervised the development of the code.

 Python Module Index

 e

 		 	

 		
 e	

 	[image: -]
 	
 effmass	

 	
 	
 effmass.analysis	

 	
 	
 effmass.dos	

 	
 	
 effmass.extrema	

 	
 	
 effmass.inputs	

 	
 	
 effmass.outputs	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V
 | W

_

 	
 	__init__() (effmass.analysis.Segment method)

 	(effmass.analysis.SegmentVasp method)

 	(effmass.inputs.Data method)

 	(effmass.inputs.DataASE method)

 	(effmass.inputs.DataAims method)

 	(effmass.inputs.DataCastep method)

 	(effmass.inputs.DataOctopus method)

 	(effmass.inputs.DataVasp method)

 	(effmass.inputs.DataVasprun method)

 	(effmass.inputs.Settings method)

A

 	
 	alpha() (effmass.analysis.Segment method)

B

 	
 	band (effmass.analysis.Segment attribute)

 	
 	band_type (effmass.analysis.Segment attribute)

C

 	
 	calc_CBM_VBM_from_Fermi() (in module effmass.extrema)

 	calculate_direction() (in module effmass.extrema)

 	cartesian_kpoints (effmass.analysis.Segment attribute)

 	CBM (effmass.inputs.Data attribute)

 	(effmass.inputs.DataAims attribute)

 	
 	change_direction() (in module effmass.extrema)

 	check_data() (effmass.inputs.Data method)

 	check_settings() (effmass.inputs.Settings method)

 	conduction_band (effmass.inputs.Settings attribute)

D

 	
 	Data (class in effmass.inputs)

 	DataAims (class in effmass.inputs)

 	DataASE (class in effmass.inputs)

 	DataCastep (class in effmass.inputs)

 	DataOctopus (class in effmass.inputs)

 	DataVasp (class in effmass.inputs)

 	DataVasprun (class in effmass.inputs)

 	
 	dE_eV (effmass.analysis.Segment attribute)

 	dE_hartree (effmass.analysis.Segment attribute)

 	degeneracy_condition (effmass.inputs.Settings attribute)

 	degree_bandfit (effmass.inputs.Settings attribute)

 	direction (effmass.analysis.Segment attribute)

 	(effmass.inputs.Settings attribute)

 	dk_angs (effmass.analysis.Segment attribute)

 	dk_bohr (effmass.analysis.Segment attribute)

E

 	
 	effmass.analysis (module), [1]

 	effmass.dos (module), [1]

 	effmass.extrema (module), [1]

 	effmass.inputs (module), [1]

 	effmass.outputs (module), [1]

 	electron_fill_level() (in module effmass.dos)

 	
 	energies (effmass.analysis.Segment attribute)

 	(effmass.inputs.Data attribute)

 	(effmass.inputs.DataAims attribute)

 	energy_range (effmass.inputs.Settings attribute)

 	explosion_index() (effmass.analysis.Segment method)

 	extrema_search_depth (effmass.inputs.Settings attribute)

F

 	
 	fd() (effmass.analysis.Segment method)

 	fermi_energy (effmass.analysis.Segment attribute)

 	(effmass.inputs.Data attribute)

 	(effmass.inputs.DataAims attribute), [1]

 	filter_segments_by_direction() (in module effmass.extrema)

 	find_CB_indices() (in module effmass.extrema)

 	find_dos_CBM_index() (in module effmass.dos)

 	
 	find_dos_VBM_index() (in module effmass.dos)

 	find_VB_indices() (in module effmass.extrema)

 	finite_difference_effmass() (effmass.analysis.Segment method)

 	finite_difference_fit() (effmass.analysis.Segment method)

 	five_point_leastsq_effmass() (effmass.analysis.Segment method)

 	five_point_leastsq_fit() (effmass.analysis.Segment method)

 	frontier_bands_only (effmass.inputs.Settings attribute)

G

 	
 	generate_segments() (in module effmass.extrema)

 	get_frontier_CB_indices() (in module effmass.extrema)

 	get_frontier_VB_indices() (in module effmass.extrema)

 	
 	get_kpoints_after() (in module effmass.extrema)

 	get_kpoints_before() (in module effmass.extrema)

 	get_maximum_indices() (in module effmass.extrema)

 	get_minimum_indices() (in module effmass.extrema)

H

 	
 	hole_fill_level() (in module effmass.dos)

I

 	
 	inertial_effmass() (effmass.analysis.Segment method)

K

 	
 	kane_fit() (effmass.analysis.Segment method)

 	kane_mass_band_edge() (effmass.analysis.Segment method)

 	kpoint_indices (effmass.analysis.Segment attribute)

 	
 	kpoints (effmass.analysis.Segment attribute)

 	(effmass.inputs.Data attribute)

 	(effmass.inputs.DataAims attribute)

M

 	
 	make_table() (in module effmass.outputs)

 	
 	mass_integration() (effmass.analysis.Segment method)

N

 	
 	number_of_bands (effmass.inputs.Data attribute)

 	(effmass.inputs.DataAims attribute), [1]

 	
 	number_of_kpoints (effmass.inputs.Data attribute)

 	(effmass.inputs.DataAims attribute)

O

 	
 	occupancy (effmass.analysis.Segment attribute)

 	(effmass.inputs.Data attribute)

 	(effmass.inputs.DataAims attribute)

 	
 	optical_effmass_kane_dispersion() (effmass.analysis.Segment method)

 	optical_poly_effmass() (effmass.analysis.Segment method)

P

 	
 	parse_DOSCAR() (effmass.inputs.DataVasp method)

 	plot_dos() (in module effmass.outputs)

 	plot_integrated_dos() (in module effmass.outputs)

 	
 	plot_segments() (in module effmass.outputs)

 	poly_derivatives() (effmass.analysis.Segment method)

 	poly_fit() (effmass.analysis.Segment method)

R

 	
 	reciprocal_lattice (effmass.inputs.Data attribute)

 	(effmass.inputs.DataAims attribute), [1]

S

 	
 	Segment (class in effmass.analysis)

 	SegmentVasp (class in effmass.analysis)

 	
 	Settings (class in effmass.inputs)

 	spin_channels (effmass.inputs.Data attribute)

 	(effmass.inputs.DataAims attribute), [1]

T

 	
 	transport_effmass() (effmass.analysis.Segment method)

V

 	
 	valence_band (effmass.inputs.Settings attribute)

 	
 	VBM (effmass.inputs.Data attribute)

 	(effmass.inputs.DataAims attribute)

W

 	
 	weight_integration() (effmass.analysis.Segment method)

 	weighted_leastsq_effmass() (effmass.analysis.Segment method)

 	
 	weighted_leastsq_fit() (effmass.analysis.Segment method)

 	weighting() (effmass.analysis.Segment method)

 _static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/electronworries.png

_static/comment.png

_static/down-pressed.png

_static/minus.png

_static/plus.png

_static/file.png

_static/screenshot.png
electron (11 1]

finite difference mass is 0.09

3-point parabolic mass is 0.09

weighted parabolic mass is 0.10

alpha is 1.021 1/ev

kane mass at bandedge is 0.089

range of quasi-linear until 0.224 eV

optical mass at band edge (assuming Xane dispersion) is 0.10

— polynomialoder 6
— finte i prabolic
e pont parabolic
025 ‘weighted parabolic
"~ Kane quasiinear
X DFT
0z
S o
010
0os
000

030 002 004 006 008
k(A1)

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Effmass

 		
 Features

 		
 Supported Codes

 		
 Installation

 		
 Alternative Installation Methods

 		
 API documentation

 		
 effmass.inputs

 		
 effmass.extrema

 		
 effmass.dos

 		
 effmass.analysis

 		
 effmass.outputs

 		
 Implementation

 		
 Methods for calculating the curvature effective mass

 		
 Related packages

 		
 Which features are unique to the effmass package?

 		
 Development

 		
 Testing

 		
 Citing

 		
 License

 		
 Acknowledgements

_static/up.png

_static/ajax-loader.gif

_images/electronworries.png

_images/screenshot.png
electron (11 1]

finite difference mass is 0.09

3-point parabolic mass is 0.09

weighted parabolic mass is 0.10

alpha is 1.021 1/ev

kane mass at bandedge is 0.089

range of quasi-linear until 0.224 eV

optical mass at band edge (assuming Xane dispersion) is 0.10

— polynomialoder 6
— finte i prabolic
e pont parabolic
025 ‘weighted parabolic
"~ Kane quasiinear
X DFT
0z
S o
010
0os
000

030 002 004 006 008
k(A1)

